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39.1 Introduction
Implantable electrical pacemakers are a corner-stone of modern heart rhythm management [1]. Since their clinical intro-
duction in 1958, their technological sophistication, both in software (e.g., programmability, adaptability, automaticity, 
and associated algorithms) and hardware (e.g., battery, sensor, and lead technology), and their indications for use (e.g., 
atrioventricular block, bradycardia, heart failure, arrhythmias, hypertrophic cardiomyopathy, etc.) have steadily increased 
[2]. As a result, by 2009–14 pacemaker implantation had increased to approximately 60 implantations per 100,000 persons 
in the United States [3] and Canada [4], and slightly less in Europe (approximately 50 per 100,000 persons, although this 
varied greatly by country, with the highest countries [Germany, Finland] having rates above 100 per 100,000 persons) [5].

Despite their incredible utility, inherent limitations (e.g., infection, thrombosis, generator or lead failure, lack of auto-
nomic responsiveness, interactions with magnetic fields) motivate exploration of alternative pacing modes. This has 
included the development of biological and leadless pacemaker systems, however even these potentially transformative 
technologies are limited in certain settings, due to the need for (minimally invasive) surgical implantation.

In the emergency setting, the bradycardic or asystolic heart can be a life-threatening condition. In this case, a method 
for extracorporeally induced pacing for use during resuscitation, transportation, or as a bridge to permanent pacemaker 
implantation has the potential to be a life-saving intervention. A commonly used technique of temporary pacing for emer-
gency cases is transcutaneous electrical pacing through the chest wall [6]. However, this technique is painful, not practical 
for prolonged use, and typically necessitates the use of a sedative or aesthetic agent, which may further impair the critical 
hemodynamic condition of a patient. Mechanical pacing, on the other hand, represents a rapidly available, non-invasive, 
and generally well-tolerated means of pacing the asystolic [7] or bradycardic [8] heart, which has been used to maintain 
consciousness in patients during extended asystolic periods (close to 3 hours in some cases) [9]. In this chapter, the mecha-
nisms, application, challenges, and future directions of mechanical pacing will be reviewed and discussed.

39.2 Mechanisms of mechanical pacing

39.2.1 Mechano-electrical coupling

The heart’s mechanical activity and its environment and are tightly linked to its electrical activity. This relationship involves 
feed-forward connections between electrical excitation and mechanical contraction (commonly known as excitation–con-
traction coupling) [10] and feed-back from the mechanical state of the myocardium to the origin and spread of excitation 
(mechano-electric feedback) [11]. These links form an intracardiac mechano-electric regulatory loop (mechano-electric 
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coupling, MEC) driven by multiple-mechanisms, including specialized stretch-activated ion channels, ion channel mecha-
no-sensitivity, intracellular calcium handling, and second messenger systems (Fig. 39.1) [12]. MEC is apparent at all levels 
of structural and functional integration, from the (sub-)cellular to whole organ and in patients and may be important both for 
normal cardiac function [13] and in deadly cardiac arrhythmias [12]. As a result, acute localized mechanical stimulation of 
the heart, for instance during finger-tapping of the epicardium in open heart surgery, by direct tissue contact of intra-cardiac 
catheters [14–16] (Fig. 39.2) and pacing leads [17–19], or by extracorporeal impact with precordial thump [20] can cause 
mechanically induced excitation, resulting in myocardial contraction.

39.2.2 Determinants of mechanically induced excitation

One of the principal mechanisms thought to underly the response of the myocardium to acute mechanical stimulation is 
activation of cation non-specific stretch-activated channels (SACNS), whose open probability is increased in response to 
cell deformation [21]. SACNS were discovered in cardiac cells over two decades ago (Fig. 39.3) [22,23]. With a reversal 
potential between peak and resting membrane potential levels (∼-20–0 mV) [24], the timing of acute mechanical stimula-
tion is critical to outcome, as when SACNS are opened membrane potential will be dawn to this potential [21]. As a result, 
when applied during diastole, activation of SACNS by acute mechanical stimulation will cause membrane depolarization, 
which, if supra-threshold, will trigger excitation (Fig. 39.4) [25]. On the other hand, SACNS activation in systole during the 
action potential plateau will have a repolarizing effect, causing action potential shortening [26].

Experimentally, stretch-induced depolarization of resting membrane potential has been demonstrated in isolated cells 
[27], tissue [28], and whole heart preparations [29]. In one of the classic illustrations of MEC, it was shown that in iso-
lated canine hearts a transient increase in the volume of an intraventricular balloon causes diastolic depolarization, whose 

FIGURE 39.1 The Mechano-Electric Coupling (MEC) regulatory loop. Feed-forward (excitation–contraction coupling, ECC) and feedback (mech-
ano-electric feedback, MEF) links between cardiac mechanics and electrophysiology. Reproduced with permission from Quinn [117].

FIGURE 39.2 Acute localized mechanical stimulation of the heart by an intra-cardiac catheter. ECG lead 2 from a patient undergoing right cardiac 
catheterization, showing two premature beats as the catheter is withdrawn from the pulmonary artery into the right ventricle. Reproduced with permission 
from Befeler [14].



Mechanical pacing of the heart   Chapter | 39    893

amplitude correlates with the magnitude of the volume applied [30]. If sufficiently large, these mechanically induced 
depolarizations can trigger premature ventricular beats (Fig. 39.5) [29]. This response was attributed to SACNS, as their 
pharmacological block eliminates the response [31]. It was further suggested that it was the myocardial deformation (rather 
than an increase in myocardial stress) that was the determining factor for supra-threshold depolarization, as the change in 
intraventricular volume that caused mechanically induced excitation was remarkably consistent between experiments in the 
same species, while the associated changes in intraventricular pressure showed high variability [32].

Local mechanical stimulation of the ventricles is also effective for causing premature beats. In a recent study of mecha-
nisms of arrhythmogenesis in Commotio cordis, it was shown with voltage optical mapping that local mechanical stimuli 
applied to the epicardium of isolated rabbit hearts reliably triggers premature excitation at the contact site, which is similar 
to electrically induced excitation (Fig. 39.6) [33]. Further, in agreement with the results from global mechanical stimula-
tion, excitation-inducibility was predicted by local tissue deformation (rather than tissue stress, applied force, or rate of 
deformation), and was eliminated by pharmacological block of SACNS. Similar results have been shown in monolayers 
of cultured cardiac myocytes stimulated with fluid jets [34], in which optical mapping revealed local excitation that was 
reduced with SACNS block, and in a pig model of Commotio cordis, in which precordial impact resulted in focal excitation 
originating from tissue immediately underneath the site of impact (Fig. 39.7) [35].

Thus, it is clear that mechanically induced deformation of the heart can result in localized depolarization of membrane 
potential, leading to mechanically induced premature excitation, an effect that is determined by the extent of myocardial 
deformation and is caused by SACNS activation.

FIGURE 39.3 Cation non-specific stretch-activated channels 
(SACNS) in cardiac cells. (A) Cell-attached patch recording of a neona-
tal rat ventricular myocyte during application of negative pressure (∼2 cm 
Hg). (B) Current (I)-voltage (Vp) relationship of resulting stretch-activated 
current. Reproduced with permission from Craelius et al. [22].

FIGURE 39.4 Schematic representation of transient effects of stretch 
on ventricular membrane potential. Indication of contribution by cat-
ion non-selective stretch-activated channels (SACNS; red arrows), based 
on SACNS reversal potential (Erev; red line). Depending on stretch timing, 
the action potential may be shortened (grey dashed line), or the cell may 
depolarize (black dashed line), resulting in early (EAD) or delayed (DAD) 
after-depolarization-like behavior, and with sufficient stretch excitation 
(red dashed line). Adapted with permission from Kohl [125].

FIGURE 39.5 Effects of transient whole heart stretch by intraventricular balloon inflation. Monophasic action potential (MAP) recordings form 
the epicardium (EPI) of the left ventricle (LV) of an isolated canine heart during transient changes in LV volume (∆VOL). Reproduced with permission 
from Franz et al. [29].
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FIGURE 39.6 Local epicardial mechanical stimulation and left ventricular excitation visualized by optical mapping. (A) Images of local epi-
cardial mechanical stimulation applied to the left ventricle of an isolated rabbit heart. (B and C) Representative voltage optical mapping recordings 
during mechanically (B) or electrically (C) induced excitation from the same mid-level freewall location (green dot). Reproduced with permission from  
Quinn et al. [33].

FIGURE 39.7 Mechanically induced excitation during precordial impact. Map of endocardial activation from a 64-pole constellation basket in the 
left ventricle of a sedated pig. Reproduced with permission from Alsheikh-Ali et al. [35].



Mechanical pacing of the heart   Chapter | 39    895

39.3 Application of mechanical pacing

39.3.1 Precordial percussion

Nearly one hundred years ago, using rhythmic application of fist thumps applied to the precordium (now commonly referred to 
as “precordial percussion,” “percussion pacing,” or “fist pacing”) (Fig. 39.8A), Eduard Schott triggered competent ventricular 
contractions in patients with acute Stokes-Adams attacks (characterized by a decrease in cardiac output and loss of conscious-
ness due to a transient arrhythmia - often an asystolic or bradycardic ventricle) allowing them to sustain consciousness for 
extended periods of time [20]. The potential for extracorporeal mechanical pacing as an emergency intervention, however, was 
given little attention (aside from a paper in 1960 [36] and a case report in 1963 [7] on its use in asystole). It was not until 1970, 
when a paper detailing the first use of precordial thump to defibrillate the tachycardic heart was published [37] that there was 
a renewed interest in precordial percussion pacing [38], which led to discussion and dispute about its utility [39,40].

Since then there have been no prospective clinical studies of precordial percussion pacing [41], but a number of case 
reports have shown its ability to effectively mechanically pace the bradycardic or asystolic heart for extended periods 
(Fig. 39.8B) [7–9,42–52]. In the few case series of precordial percussion pacing reported in the literature, a total of 139 
patients have been mechanically paced, with a 93% success rate [53–55]. Importantly, ventricular contractions resulting 
from extracorporeal mechanically induced excitation have been shown to be hemodynamically more productive than exter-
nal chest compressions used in cardiopulmonary resuscitation (cardiac output is 77% of baseline for mechanically induced 
excitation, compared to 38% with optimally performed chest compressions) [56,57].

Two experimental studies have investigated the utility and mechanisms of precordial percussion pacing. In an anesthetized 
pig study of the potential of precordial thump for terminating ventricular fibrillation, while precordial thump failed as a means 
for defibrillation (necessitating the use of electrical defibrillation), in the asystolic post-shock period precordial percussion 
was an effective means of pacing the heart (Fig. 39.9), with the success of mechanically induced excitation being associated 
with thump-induced left ventricular pressure [58]. In a microminipig model of cardiac standstill (created by inducing com-
plete atrioventricular block by catheter ablation), the efficacy of precordial percussion pacing was compared to standard chest 
compressions and ventricular electrical pacing [59]. Precordial percussion was able to pace the heart continuously for up to 
2 hours, and similar to findings in patients [56,57], it was shown that precordial percussion was hemodynamically similar to 
ventricular electrical pacing, unlike chest compressions, with which hemodynamics were compromised. Further, it was shown 
that the non-selective stretch-activated channel blocker amiloride decreased the incidence of ventricular excitation with precor-
dial percussion, suggesting that SACNS are involved. Interestingly, it has also been shown in pigs [60] (and patients [61]) that 
chest compressions can lead to ventricular excitation, resulting in mechanical pacing of the heart (Fig. 39.10A).

The potential for using precordial percussion as a means for extracorporeal pacing led pacemaker, defibrillator, and resus-
citation pioneer Paul Zoll to develop a device for temporary mechanical pacing [55]. The device (“cardiac thumper”) was a 

FIGURE 39.8 Precordial percussion pacing. (A) Technique of percussion pacing, using serial blows with the ulnar side of the clenched fist to the lower 
left sternal edge. Reproduced with permission from Giordano et al. [47] (B) Complete heart block with ventricular asystole in a patient during cardiac 
catheterization (upper panel), followed by broad QRS complexes at a rate of 80 bpm induced by percussion pacing (indicated by arrows). Reproduced 
with permission from Eich et al. [44]
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modification of an industrial stapling gun, that could be manually operated or triggered by the R-wave of the electrocardiogram 
for synchronization of mechanical stimulation with phases of the cardiac cycle. This device had the advantage of being less pain-
ful than transthoracic electric stimulation, the standard-of-care method for temporary extracorporeal pacing at the time, as well 
as requiring less energy (0.04–1.5 J) than even modern external defibrillators (150–360 J) [62]. This device was tested in dogs 
with normal sinus rhythm or atrioventricular block, which demonstrated that repetitive heartbeats could be evoked. The device 
was also shown to be effective in 10 patients with asystole after ventricular fibrillation, with atrial fibrillation, or with implanted 
pacemakers for atrioventricular block. Ultimately however, the device was considered uncomfortable by patients, which limited 
its prolonged clinical use and resulted in it being quickly superseded by advances in external electric stimulation [63].

39.3.2 High intensity focused ultrasound

While precordial percussion is an immediately accessible form of extracorporeal pacing that is well suited for out-of-hospi-
tal emergency settings, more recent device-based mechanical pacing efforts have focused on the use of extracorporeal high 
intensity focused ultrasound (HIFU) [64]. An effective ultrasound-based pacing device would have the clear advantage 
over percussion pacing of being more comfortable for the patient and being useful over a longer period.

The bioeffects of ultrasound have been extensively studied, motivated by the assessment of its safety for use in echocar-
diography. Effects are dependent on tissue properties (e.g., density, attenuation, absorption), ultrasound exposure param-
eters (e.g., frequency, intensity, pulse duration/duty cycle), and beam configuration [65]. In general, the bioeffects of 
ultrasound may be categorized as thermal or mechanical. Thermal effects are a result of absorbed ultrasound energy being 
converted into thermal energy, causing heating of the tissue, which if excessive can cause tissue damage. Mechanical 
effects relate to either physical deformation of tissue/cells or to tissue cavitation. Cavitation is a process by which micro-
scopic gas bubbles develop in an acoustic field at high negative pressures, vibrate, and with enough acoustic pressure 
implode, causing microscopic regions of high temperature and tissue damage. Cavitation can be enhanced by the use of 
contrast microbubbles, which can then result in cardiac excitation [66–71] (through activation of SACNS [72]), with a posi-
tive correlation existing between the incidence of ultrasound-induced premature excitation and the resulting tissue damage 
[73–77]. Ultrasound-induced tissue deformation, on the other hand, can occur as a result of acoustic radiation force, which 
is a consequence of momentum transfer from the ultrasound wave to the tissue, created by acoustic energy attenuation. 
In fact, mechanically induced excitation of the heart by extracorporeally generated shock waves commonly occurs during 
lithotripsy and is one the known complications of the procedure [78–84]. At a microscopic level, ultrasonic waves may 
also cause direct mechanical vibration of cellular structures [85], which could excite SACNS, resulting in cellular excitation.

The first report of the excitatory effects of ultrasound on the heart came from E. Newton Harvey in 1929, who noted 
that in frog and turtle hearts high frequency ultrasound caused an increase in beating rate or in the regular beating of an 
otherwise quiescent ventricle[86]. Subsequent studies showed similar ultrasound-induced excitation in frog [87], mouse 
[88], and rat [89] hearts, as well as cultured neonatal ventricular cardiomyocytes [90].

FIGURE 39.9 Precordial percussion pacing in the experimental setting. Termination of ventricular fibrillation by external defibrillator shock in an 
anesthetized pig, followed by a single premature ventricular contraction, two seconds of asystole, and a series of chest thumps resulting in ventricular 
depolarization that produce left ventricular (LV) contraction. Reproduced with permission from Madias et al. [58].
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The first report of repetitive sound wave-induced excitation that might be considered as mechanical pacing was in 
open-chest anesthetized pigs, using periodic pulses of intense ultrasonic waves generated by an intracavitary transducer 
consisting of piezoelectric ceramic disks. The application of these ultrasonic waves (70 kHz with 5 ms duration at 5 MPa) 
to the exposed myocardium resulted in pacing the animals out of hypoxia-induced bradycardia, with nearly 100% pacing 
capture observed when ultrasonic pressure level or pulse duration was increased [91].

More recently, the first detailed description of HIFU-based pacing was published, in which extracorporeal cardiac pac-
ing was demonstrated in an intact, anesthetized rat model [92]. This system utilized a two-phase sequence of accentuated 
negative (rarefaction) and positive (insonation) pressure transmission through dynamic adjustment of frequency, phase, 
and intensity of the HIFU signal, transmitted by a three element, dome-shaped, annular transducer (Fig. 39.11A). This 
pattern of HIFU application first produces cavitation-related microbubbles in the acoustic focal region by rarefication  

FIGURE 39.10 Cardiac stimulation by precordial chest compressions. (A) 1:1 ventricular excitation in an anesthetized pig (shown in right [RV] 
and left [LV] ventricular monophasic action potential [MAP] recordings) during mechanical chest compressions (marked by arrows) after long-lasting 
(at least 2.5 minutes) ventricular fibrillation. (B) Ventricular excitation during two mechanical chest compressions (marked by arrows, with an interposed 
spontaneous depolarisation), immediately followed by ventricular fibrillation. Reproduced with permission from Osorio et al. [61].
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(1 ms of 1.8 MPa peak negative pressure with a pulse repetition frequency of 20 kHz and a 28% duty cycle), which 
enhances the effect of the immediately following ultrasonic shock by isonation (5 ms of a 3 MPa peak positive pressure) 
(Fig. 39.11B). The insonation was synchronized with the respiratory cycle and the peak of the ECG R-wave, with applica-
tion timing varied through ventricular diastole (Fig. 39.11C). Using echocardiography for direct visualization of the left 
ventricle, HIFU-induced contractions were observed (Fig. 39.11D). Overall, the mean success rate for all pacing attempts 
(using delays of 100–400 ms after the R-wave) was only 12%, but success varied depending on the timing of the HIFU 
pulse during diastole, with success rates of 25%–50% and up to seven consecutive captured beats obtained in late diastole 
(450–470 ms delay). Overall, while the rate of HIFU pacing success was modest in this study, it was believed that this was 
primarily a function of the relatively high heart rate of the rat, and that higher success would have been seen in larger mam-
mals with slower heart rate and a longer diastolic period (such as the previous report in pigs [91]).

The latest published experimental study of HIFU-based pacing was performed in ex vivo and in vivo pig hearts [93]. 
In this study a 256-element phased array HIFU transducer delivered negative pressure pulses (5 ms, 1 MHz, 5 MPa peak 
negative pressure) to the right atrium or right or left ventricle, timed from local electrograms. In the ex vivo heart, HIFU 
stimulation resulted in success over drive pacing (Fig. 39.12A). Further, it was shown that dual chamber pacing of the right 
atrium and right ventricle was possible with a variable atrioventricular delay, like electrical dual chamber pacemakers, 
enabled by the beam steering capabilities of the phased-array transducer (Fig. 39.12B). The feasibility of HIFU-induced 

FIGURE 39.11 Extracorporeal high intensity focused ultrasound (HIFU)-based pacing. (A) Experiment setup showing gel phantom, along with 
the HIFU and ultrasound imager (to its right and left, respectively) and the passive cavitation detector (PCD) aimed at the HIFU focus (tip located at one 
o’clock relative to the HIFU’s face). (B) HIFU base harmony (blue) and PCD (red) signals during HIFU application. (C) A sequence of premature ven-
tricular contractions (PVCs) induced by extracorporeal HIFU pacing using breath gating to trigger pacing with expiration, shown in the ECG trace (top), 
along with the insonation triggers (center, marked by circles) and breath trace (bottom). (D) Ultrasound image of the left ventricle showing the HIFU focus 
(green cursers) and a mechanically induced PVC on the ECG trace. Reproduced with permission from Livneh et al. [92].
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excitation was then tested in vivo, in which it was found that the use of contrast agent was needed to enhance mechanical 
effects, so that consistent capture was possible (Fig. 39.12C).

39.3.3 Injectable magnetic microparticles

While precordial percussion and HIFU are the forms of non-invasive mechanical pacing with the greatest track record, there 
have been efforts by others to use alternative modes of energy to extracorporeally excite the heart. Most notably, it has been 
shown that cardiac excitation can be induced by time-varying magnetic fields [94–100] or by focused near-infrared laser 
pulses [101]. However, these approaches have thus far proved impractical, due to high energy requirements and unreliable 
pacing capture. The use of magnetic fields, however, has inspired a recent report suggesting an alternative approach for 
delivery of mechanical stimulation to the heart using injectable magnetic microparticles [102]. The concept of this study 
was that intravenously injected magnetic microparticles could be localized and trapped in the cavity of the right ventricle 
by applying a magnetic force with an external electromagnet. Once in place, generation of an alternating magnetic field that 
periodically forces the microparticles against the ventricular wall could be used to mechanically stimulate the tissue and 
cause excitation. This was tested in ex-vivo and in-vivo rat hearts, followed by in vivo experiments in pigs. In the initial 
Langendorff-perfused isolated rat heart experiments, the electromagnet magnetic (Fig. 39.13A) was positioned directly 
against the freewall of the right ventricle and a low duty (20%) square waveform was applied (5 Hz, with a 40 ms period of 
current in the coil, followed by 160 ms without current). Magnetic microparticles (7.6 µm) were then injected directly into 
the right ventricle, which resulted in overdrive pacing (Fig. 39.13B). Interestingly, sine and ramp protocols were ineffec-
tive, highlighting the need for pulsatile mechanical stimulation for mechanically induced excitation to occur. Next, in anes-
thetized rats with drug-induced bradycardia (using the alpha-2-adrenergic agonist xylazine), the electromagnet coil was 

FIGURE 39.12 Experimental high intensity focused ultrasound (HIFU)-based pacing. (A) Electrical (right atrium [RA] and left ventricle [LV]) and 
hemodynamic recordings of continuous ultrasonic pacing of an isolated pig heart. (B) Consecutive stimulation of the right atrium (yellow pulse) and right 
ventricle (RV; red pulse) with a single ultrasonic probe and an atrioventricular delay of 0 ms (left panel), 40 ms (middle panel), and 120 ms (right panel). 
(C) HIFU-induced premature ventricular depolarization in an anesthetized pig. Reproduced with permission from Marquet et al. [93].
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positioned over the lower part of the sternum and microparticles were injected into the tail vein. After 30–60 seconds, the 
magnet was switched to generate magnetic pulses with either a low (20%) or high (80%) duty cycle. While stimulation with 
the high duty cycle was largely ineffective for inducing ventricular excitation, the low duty cycle consistently provoked 
transient overdrive pacing that lasted for periods of 4–20 seconds (Fig. 39.13C). Finally, in open-chest anaesthetized pigs, 
the electromagnet was positioned against the right ventricle and the magnetic microparticles were injected into the femoral 
vein. As in the rats, first the magnetic particles were accumulated in the ventricle by applying a constant magnetic field for 
∼1 minute, followed by application of short duty cycle (10%) square pulses. While only tested in two pigs, in both cases 
this strategy resulted in ∼20 seconds of sustained pacing, followed by 2 minutes of intermittent excitation (after which the 
experiment was stopped due to overheating of the electromagnet) (Fig. 39.13D).

39.4 Challenges for mechanical pacing

39.4.1 Loss of mechanical pacing capture

While extracorporeal pacing is clearly possible through methods causing mechanically induced excitation, the techniques 
developed to date all appear to be unable to sustain continuous pacing over an extended period. In particular, the most de-
veloped reports of mechanical pacing using HIFU [92] or injectable magnetic microparticles [102] suffer from rapid loss of 
capture. In the case of HIFU-based mechanical pacing, hearts responded only a maximum of seven times before losing the 
ability to consistently respond to mechanical stimuli, despite pacing being limited to once per breathing cycle. Mechanical 
pacing with injectable magnetic microparticles was marginally more successful, with ∼30 beats being captured before loss 
of 1:1 capture (followed by ∼1.5 minutes of sporadic mechanically induced excitation). Moreover, even though clinically 
mechanical pacing has been reported to be successful over longer periods, in the published cases it is unknown whether 
there was indeed 1:1 (rather than sporadic) pacing capture, and in many cases, treatment was interspersed with periods of 
spontaneous circulation, so the sustainability of individual periods of mechanical pacing is uncertain. It is also worth not-
ing that in emergency settings the hearts of patients in asystole will be in a state of global ischemia (with ischemic severity 
depending on response time), which will impact the efficacy of mechanical stimulation [103], yet all experimental studies 
to date have been performed in healthy hearts.

The cause of a lack of sustainability in mechanical pacing studies is not clear but has been attributed to a loss of 
magnetic microparticles [102] or contrast agent at the pacing site [93], or disruption of myocyte homeostasis (such as a 
mechanically induced increase in intracellular calcium levels) [92]. A recent study of mechanical pacing by direct epi-
cardial mechanical stimulation in rabbit isolated hearts has corroborated the rapid loss of successful mechanical pacing 
capture, suggesting that this effect is in fact a fundamental limitation of mechanical stimulation itself [104]. In that study, 

FIGURE 39.13 Mechanical pacing with injectable magnetic microparticles. (A) Electromagnet and Langendorff-perfused rat heart (during me-
chanical pacing the electromagnet was positioned against the ventricular apex). (B) Mechanical pacing of a Langendorff-perfused rat heart, showing left 
ventricular pressure (LVP; red line), current through the electromagnet coil (I; blue line), and mechanically stimulated beats (indicated by +signs). (C) 
Mechanical pacing of an in vivo rat heart. (D) Mechanical pacing of an in vivo pig heart. Reproduced with permission from Rotenberg et al. [102].
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it was found that repetitive local mechanical stimulation of the left ventricular epicardium causes repeated focal excitation 
(Fig. 39.14), but that 1:1 capture is reversibly lost after a finite number of stimulations in a stimulation rate dependent man-
ner, even though the tissue remains electrically excitable (Fig. 39.15). While the mechanism for the loss of capture with 
repetitive mechanical stimulation was not investigated in that study, it was speculated that mechanical stimulation and elec-
trical stimulation are limited by different types of (mechanical and/or electrical) ‘refractoriness.’ This concept is supported 
by a study of repetitive local stimulation of left ventricular epicardium in open-chest anesthetized dogs that demonstrated 
a decrease in the effective refractory period with electrical, but not mechanical stimulation [105]. In another dog study, in 
which a mechanical stimulation was applied every 8–12 sinus beats, mechanical stimulation during the relative refractory 
period (established by electrical stimulation) resulted in excitation only with every second or third mechanical stimulation 
[106]. Finally, in a study using transient inflation of an intraventricular balloon as the means of mechanical stimulation, 
repeat inflations were effective only after periods of rest (up to 1 minute for full recovery of mechanically induced excita-
tion) [107]. Overall, these studies suggest that mechanical simulation indeed involves a pool of mediator(s) that is different 
from established mechanisms of electrical refractoriness.

Potential mechanisms for an MEC adaptation period, during which there is a temporary reduction in the potential for 
mechanically induced excitation that returns after a period of normal sinus rhythm, might include effects of mechanical 
stimulation on: (1) tissue mechanical properties (passive or viscoelastic); (2) SACNS (or other ion channel activity); (3) 
ionic distributions and/or availability; (4) intracellular domains (such as sarcoplasmic reticulum or mitochondria); (5) 
second messenger systems depletion or activation that influence the earlier; or (6) other unknown factors necessary for 
mechanically induced excitation.

FIGURE 39.14 Local epicardial mechanical pacing and left ventricular excitation visualized by optical mapping. (A) Experimental setup, showing an 
instrumented isolated rabbit heart (ES indicates electrical stimulation electrode and MS indicates mechanical stimulation probe). (B) Representative voltage 
optical mapping recording of mechanically induced focal left ventricular excitation during mechanical pacing. Reproduced with permission from Quinn and  
Kohl [104].

FIGURE 39.15 Loss of mechanical pacing capture. (A) Electrocardiogram (ECG) and left ventricular pressure (LVP) recordings during sinus rhythm, 
followed by a train of mechanical stimulations (MS) during which loss of 1:1 capture occurs, resulting in a return to sinus rhythm with intermittent MS capture. 
(B) Effect of overdrive pacing rate by MS on the number of stimulations to loss of 1:1 capture. (C) ECG and LVP recordings during a train of 1:3 MS:electrical 
stimulations (ES) during which loss of MS capture occurs, while ES capture is maintained. Reproduced with permission from Quinn and Kohl [104].
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There is some evidence supporting these potential mechanisms for a loss of mechanical pacing capture. In terms of 
potential effects on myocardial mechanics, during mechanical testing of contracting whole hearts, a reversible decrease 
of muscle stiffness is seen between the first and subsequent deformation cycles, which recovers after ∼30 seconds of rest 
[108]. This viscoelastic effect could contribute to an MEC adaptation period, further supported by the observed stimulation 
rate-dependent decrease in the number of mechanical stimulations before a loss of pacing capture.

The concept that SACNS show “mechanical refractoriness” is supported by the observation that repeated mechanical 
stimulation causes a reduction in measured SACNS current in acutely isolated embryonic chick heart cells unless stimu-
lations are spaced minutes apart [109]. Similarly, mechanically induced current of Piezo channels has been shown to 
decrease with repetitive stimulation in HEK293t cells expressing the channels, and this leads to a frequency dependent loss 
of mechanically induced excitation of sensory dorsal root ganglion neurons [110]. This apparent use-dependent decrease 
in mechanically activated currents could be partly responsible for a rate-dependent decrease in the number of mechanical 
stimulations to a loss of pacing capture.

The potential for mechanical effects on ionic concentrations, especially via modulation of sub-cellular compartments, 
is supported by the evidence for direct mechanical effects on intracellular calcium handling in cardiac cells [111]. These 
effects include an acute stretch-induced increases in localized sarcoplasmic reticulum calcium-release events (“calcium 
sparks”) in ventricular myocytes (which reduces sarcoplasmic reticulum calcium levels) [112] and calcium release from 
mitochondria (whose intra-organelle calcium concentrations may also be affected) [113]. If alterations in calcium handling 
(such as stretch-induced calcium-release) are involved in mechanically induced excitation, then a depletion in sarcoplasmic 
reticulum calcium stores, or of a mechanically releasable sub-pool of calcium, could affect the efficacy of mechanical stim-
ulation. Moreover, an increase in calcium sparks with stretch is thought to result either from direct mechanical stimulation 
of ryanodine receptor channels [112], or via effects mediated by reactive oxygen species [114]. Both mechanisms could be 
affected by the frequency of cyclic mechanical stimulation, which could explain the stimulation rate-dependent decrease in 
the number of stimulations before a loss of pacing capture.

Ongoing studies in rabbit isolated hearts have been investigating the potential mechanisms for a loss of capture with 
mechanical pacing [115]. Thus far it has been shown that pharmacologically induced changes in active or passive tissue 
stiffness do not alter pacing sustainability, but that there is a continuously increasing delay between mechanical stimulation 
and excitation with each successive mechanically paced beat, suggesting that run-down of SACNS current may be respon-
sible of the loss of capture during mechanical pacing. Further, it has been shown that the time for full recovery of mechani-
cal pacing capture is ∼1 minute, with a continuous decrease in the number of captured beats when recovery interval is 
further reduced, and that sub-threshold mechanical stimulation prior to mechanical pacing reduces the subsequent number 
of captured beats. Finally, in those studies global ischemia causes a progressive reduction in the number of captured beats, 
with complete loss of capture occurring after ∼15 minutes of ischemia.

39.4.2 Adverse side effects

With mechanical stimulation there is the potential for the induction of cellular and/or tissue damage, which could occur 
because of mechanical, and in the case of HIFU-based pacing, thermal effects. In terms of HIFU-induced thermal effects, 
the elevation of tissue temperature to necrosis-inducing levels is unlikely, as HIFU is delivered in relatively short pulses 
or short-bursts, and coronary perfusion should quickly equilibrate any local temperature rise before application of the next 
excitation pulse. That said, if stimulation energy level is kept below the FDA guidelines (720 mW/cm2 in the case of the 
heart, the parameter given for ultrasound imaging), this should avoid tissue necrosis. Mechanical stimulation, if too intense, 
also has been shown to cause tissue damage whether by HIFU [66,73–77] or direct mechanical interaction [33,104,116], so 
stimulation energy levels must again be carefully considered. In terms of direct myocardial stimulation, it has been shown 
in isolated guinea pig hearts that a pre-impact kinetic energy greater than ∼3 mJ results in measurable cellular damage 
[116]. For HIFU stimulation, the recommended mechanical indicator (which is proportional to the negative peak instanta-
neous pressure amplitude) should be kept below 1.9, so the inertial cavitation that leads to generation of free radicals can 
be ruled out. This creates a challenge however, as the acoustic energy at the target must be high enough to reliably cause 
excitation, but not high enough to result in excessive radiation pressure or cavitation at the stimulation site or in other tis-
sues located along the acoustic beam path. For clinical use, in order to guarantee safe exposure levels at the target tissue, 
monitoring may be required (e.g., cavitation detection).

The other major concern for cardiac mechanical stimulation is the potential for the induction of sustained (and poten-
tially lethal) arrhythmias [117]. Much like for electrical stimulation or defibrillation [118], a vulnerable window exists 
during the ECG T-wave in which mechanically induced excitation can be the trigger for ventricular fibrillation (Fig. 39.16) 
[119]. In the whole heart during electrical systole, membrane potential across the ventricular myocardium is spatially 
non-uniform. As a result, the timing of a mechanical stimulus relative to the underlying cellular action potential at any 
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location will vary. While the ventricular activation wave-front is steep and fast (resulting in a narrow ECG QRS complex 
and preventing regionally differing responses to mechanical stimulation), repolarization is a more graded process (broader 
and lower ECG T-wave). As such, mechanical stimulation may give rise to delayed (in cells that have regained excitabil-
ity) or early (in cells that are repolarizing) after-depolarization-like events. If supra-threshold, these depolarizations can 
cause ectopic foci, potentially providing a trigger for arrhythmogenesis. Stimulation of cells at more positive membrane 
potentials may affect the time-course of repolarization, increasing electrophysiological heterogeneity in affected areas of 
the myocardium, which could contribute to the formation of an arrhythmia-sustaining substrate. The plausibility of this 
concept has been supported by computational modelling [120,121], and in the clinical and experimental setting of mechani-
cal pacing, while rare, ventricular tachyarrhythmias have been reported to occur with precordial percussion [53], HIFU [93]  
(Fig. 39.17A), direct epicardial impact [33] Fig. 39.17B, and chest compressions [60,61] (Fig. 39.10B ). Thus, in applica-
tions of mechanical pacing, stimulation relative to any underlying rhythm should be considered.

39.5 Future directions

39.5.1 Further developments

To meet the challenges described earlier and make mechanical pacing a viable clinical therapy, further developments are 
needed. Firstly, additional safety testing must be performed to determine mechanical stimulation parameters that do not 
carry a risk of causing sustained arrhythmias or myocardial damage (e.g., HIFU-based pacing experiments in which tem-
perature and cavitation are monitored). At the same time, the conditions and parameters necessary for sustained mechani-
cally induced excitation must be defined, which necessitates experiments to assess contributing factors, such as: (1) the 
mode, algorithms, and characteristics of energy application; (2) the maximum viable pacing rate in various states (lower 
rates will be possible in severely bradycardic and asystolic hearts); (3) the utility of multiple (alternating) or specifically 
targeted pacing sites; and (4) the inclusion of interspersed short pauses (similar to CPR with interspersed breaths) to regain 

FIGURE 39.16 Vulnerable window for mechanically induced ventricular fibrillation. Effects of mechanical stimulation during the ECG T wave 
(green bar) in the whole heart, showing regionally varying response depending on the local phase of the action potential. Adapted with permission from 
Kohl et al. [119].
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mechanical excitability. Finally, the appropriate method(s) of mechanical stimulation for each application must be defined 
and optimized, which may require novel devices or technical developments (e.g., for HIFU-based pacing there may be the 
need for novel transducer geometries or implementation of multiple, regionally dispersed transducers, both of which may 
be achieved by the use of novel stretchable ultrasound technology [122]).

39.5.2 Potential applications

If the conditions and suitable devices for sustained extracorporeal mechanical pacing can be developed, there is the poten-
tial for multiple clinical applications of this technique. As already discussed, it may be a life-saving intervention as a means 
of temporary pacing and a bridge to instrumentation-based pacing approaches for in- or out-of-hospital emergency situa-
tions where patients are suffering from acute bradycardia or asystole. In the case of HIFU, where the ultrasound beam can 
be focused on particular locations of the heart, this could be extended to include region-specific pacing, such that the atria 
might be paced during sinus node dysfunction, the ventricles during atrioventricular block, or both the atria and ventricles 
to restore atrioventricular synchronization in patients needing hemodynamic support. In fact, while the 2010 International 
Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science from the International Liai-
son Committee on Resuscitation states that: “Percussion pacing is not recommended in cardiac arrest in general”, they do 
recommend that it: “may be considered in hemodynamically unstable bradyarrhythmia until an electric pacemaker is avail-
able” [123]. In the context of clinical electrophysiology, mechanical pacing may be useful for non-invasively terminating 
existing tachyarrhythmias (such as with precordial thump [124]) or for examining their inducibility. In addition, it may be 
a valuable tool for determining the patient-specific utility of cardiac pacing in certain disease states and for testing optimal 
pacing configurations before implantation, including single versus dual chamber versus multi-site pacing, atrioventricular, 
interventricular, and intraventricular delays, and optimal pacing sites, especially in the context of biventricular pacing  
(“resynchronization therapy”).

39.6 Conclusions
Mechanical pacing has great potential as a rapidly available, non-invasive method for establishing extracorporeal con-
trol of cardiac rhythm. Through a long history of clinical and experimental studies, it has been shown to be generally 
safe and well-tolerated and applied by simple, readily available means or through novel devices. Yet, while it is clear 
that mechanical stimulation can cause ectopic excitation of the heart, the conditions for sustained pacing remain to be 
elucidated. With further technological developments and testing of the safety and efficacy of mechanical pacing, this 
technique has the potential to be a powerful treatment and diagnostic tool for emergency medicine and cardiac electro-
physiology applications.

FIGURE 39.17 Mechanically induced ventricular tachyarrhythmias. (A) Electrical (right atrium [RA] and left ventricle [LV]) and hemodynamic 
recordings of ultrasound-induced ventricular tachycardia in an isolated pig heart after triggering the acoustic pulse to the relative refractory period. Repro-
duced with permission from Marquet et al. [93]. (B) Local epicardial mechanical stimulation applied to the left ventricle of an isolated rabbit heart in the 
early T wave, resulting in instantaneous ventricular fibrillation. Reproduced with permission from Quinn et al. [126].
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