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Abstract
The rhythmic and spontaneously generated electrical excitation that triggers the heartbeat originates in the sinoatrial node (SAN).
SAN automaticity has been thoroughly investigated, which has uncovered fundamental mechanisms involved in cardiac pace-
making that are generally categorised into two interacting and overlapping systems: the ‘membrane’ and ‘Ca2+ clock’. The
principal focus of research has been on these two systems of oscillators, which have been studied primarily in single cells and
isolated tissue, experimental preparations that do not consider mechanical factors present in the whole heart. SAN mechano-
sensitivity has long been known to be a contributor to SAN pacemaking—both as a driver and regulator of automaticity—but its
essential nature has been underappreciated. In this review, following a description of the traditional ‘clocks’ of SAN automaticity,
we describe mechanisms of SAN mechano-sensitivity and its vital role for SAN function, making the argument that the
‘mechanics oscillator’ is, in fact, the ‘grandfather clock’ of cardiac rhythm.
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Introduction

Perhaps not surprising for such a critical element to life, the
heart can independently maintain its function. Even when re-
moved from the body, it continues to beat and intrinsically
regulate its activity. This is possible as the electrical excitation
that initiates the heartbeat is produced within the organ itself
(which, incidentally, is one of the principal reasons that heart
transplantation is also possible). The heart’s intrinsic pace-
maker, the sinoatrial node (SAN), rhythmically generates ac-
tion potentials (AP) that propagate through the myocardium,
causing the heart to contract. The myogenic origin of cardiac
excitation was first identified nearly 140 years ago by Walter
Gaskell (Gaskell 1882), and its anatomical location within the
heart a few decades later by Keith and Flack (Keith and Flack

1907). In more than a century since, an entire field of research
investigating SAN automaticity has emerged, which has
taught us much about what drives pacemaker function, regu-
lation, and dysfunction. Yet, our understanding is far from
complete, and fundamental questions remain unanswered.

Perhaps the most heavily studied—but still most highly
contested—questions regarding the SAN relate to the mecha-
nism(s) responsible for its automaticity: what keeps it ticking?
There is still no consensus as to the relative importance of the
various subcellular mechanisms involved in spontaneously
generating the SAN AP (Lakatta and DiFrancesco 2009;
Noble et al. 2010; Rosen et al. 2012). Yet, despite contradic-
tory perspectives regarding the importance of individual cel-
lular components for SAN automaticity, there is now general
agreement that SAN pacemaking consists of a robust, dynam-
ic, and flexible system characterised by multiple integrated
subsystems and contributors.

The SAN AP differs from the AP of working
cardiomyocytes in multiple ways, the most important for au-
tomaticity being the period of spontaneous diastolic
depolarisation (SDD, rather than diastolic rest), during which
membrane potential gradually depolarises from its most neg-
ative value (maximum diastolic potential, MDP) towards the
threshold for AP generation (Bartos et al. 2015). The slope of
SDD is the key to determining the frequency of SAN firing,
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and thus heart rate (Mangoni and Nargeot 2008). Two pre-
dominant systems contributing to SDD have been identified
and extensively studied: the so-called ‘membrane clock’
(consisting of sarcolemmal ionic currents) and the ‘calcium
(Ca2+) clock’ (comprising intracellular Ca2+ cycling) (Lakatta
et al. 2008; Difrancesco 2010), which are mutually entrained
to form a system of coupled oscillators capable of generating
SAN automaticity (Lakatta et al. 2010).

This understanding of pacemaker function, however, has
been developed based largely on investigations of mecha-
nisms in isolated cells (and to a lesser degree, isolated tissue),
which neglects factors acting in the whole heart. There are
various important extracardiac neurohumoral factors that in-
fluence heart rate by acting directly on mechanisms of SAN
automaticity, including those released locally by the autonom-
ic nervous system and those released into the bloodstream by
the endocrine system (MacDonald et al. 2020b). There are
also intracardiac factors that acutely affect SAN function, per-
haps the most well established being stretch, which is a major
determinant of in vivo heart rate (Quinn and Kohl 2012).

In this review, after outlining the principal components of
the two classical ‘clocks’ of SAN automaticity and their mu-
tual entrainment, we briefly summarise the primary mecha-
nisms of SAN mechano-sensitivity and the critical contribu-
tion of SAN stretch to pacemaking, making an argument for
its role as the ‘grandfather clock’ of cardiac rhythm (Fig. 1).

The classical understanding of cardiac
pacemaking

Membrane clock

During early SDD, the membrane clock is driven by the “fun-
ny” current (If), an inward cation current that becomes increas-
ingly activated as membrane potential becomes more negative
(Bartos et al. 2015). It is passed through hyperpolarisation-
activated cyclic nucleotide-gated (HCN) channels
(Difrancesco 2010), of which there are four isoforms. HCN
isoforms 1, 2, and 4 are expressed throughout the human heart
and more prominently in the SAN than the atria, particularly
HCN1, which in humans is almost exclusively expressed in
the SAN (Li et al. 2015). The vital importance of HCN chan-
nels for pacemaking has been corroborated in HCN knockout
mice, which display the hallmarks of SAN dysfunction,

�Fig. 1 The grandfather clock of cardiac rhythm. Summary of the role of
mechano-sensitivity in sinoatrial node (SAN) A automaticity, B entrain-
ment, and C regulation. For expanded figures of the coupled-clock sys-
tem, please refer to Lakatta et al. (2010), Quinn and Kohl (2012), and
Bartos et al. (2015)
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including prolonged recovery, prolonged conduction time,
bradycardia, sinus dysrhythmia, and recurrent sinus pauses
(Fenske et al. 2013; DiFrancesco et al. 2021).

Although some have asserted that If is the predominant
driver of SDD and the primary pacemaking mechanism
(Difrancesco and Noble 2012), inward transmembrane Ca2+

currents also contribute to SDD. They are passed through both
transient (T-type) and long-lasting (L-type) Ca2+ channels
(Mangoni and Nargeot 2008). Cav3.1 T-type and Cav1.3 L-
type Ca2+ channels contribute to the early portion of SDD, as
they become activated at a relatively low membrane potential
(Mangoni et al. 2003). SDD ends at the threshold for Cav1.2
L-type Ca2+ channels (approximately −40 mV), at which
point their activation generates the upstroke of the SAN AP
(Mesirca et al. 2015). Although fast sodium (Na+) channels do
not trigger the upstroke in SAN cells (as they do in working
myocytes), they are heterogeneously expressed at low levels
throughout the SAN and appear to make some contribution to
automaticity (Lei et al. 2005).

Repolarising currents are also fundamental to the mem-
brane clock’s contribution to pacemaking; in fact, prior to
the identification of If, their decay at the end of the SAN AP
was thought by many to be the main driver of SAN automa-
ticity. The rapid and slow delayed rectifier potassium (K+)
currents (IKr and IKs) repolarise SAN myocytes to their
MDP, but at the same time, their total current is continuously
reduced. This repolarisation allows for a simultaneous in-
crease in the activation of If, driving depolarisation
(Mangoni and Nargeot 2008). Importantly, this depolarisation
is not prevented by inwardly rectifying K+ channels (which
stabilise and maintain the negative resting membrane potential
of working cardiomyocytes), as those channels are minimally
expressed or absent in SAN myocytes (Bartos et al. 2015).

So, overall, the balance of depolarising inward and
repolarising outward membrane clock currents is one of the
main determinants of SDD slope and largely responsible for
the oscillations that drive SAN AP firing, which ultimately
establishes heart rate.

Ca2+ clock

Intracellular Ca2+ cycling has also been shown to be a major
contributor to SDD and SAN automaticity (Bartos et al.
2015). Local Ca2+ releases (LCR) from the sarcoplasmic re-
ticulum (SR) via ryanodine receptors (RyR) result in an in-
crease in cytosolic Ca2+ concentration. Some of this Ca2+ is
returned to the SR by the sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA), while the remainder is extruded from the
cell by the Na+-Ca2+ exchanger (NCX)—with 1 Ca2+ ion
exiting for 3 Na+ ions entering—which generates an electro-
genic, depolarising current (Lakatta et al. 2008, 2010). Unlike
Ca2+ sparks released from the SR at rest in working
cardiomyocytes, LCR during SDD in the SAN are rhythmic,

larger in amplitude, and longer in duration (Sirenko et al.
2013). This may be partly explained by the fact that while
LCR were originally thought to be spontaneous, they are actual-
ly, at least in part, triggered by Ca2+ influx via Cav1.3 L-type
Ca2+ channels (Torrente et al. 2016). The importance of diastolic
intracellular Ca2+ cycling in SAN myocytes is further enhanced
by the fact that they have higher basal cyclic adenosine
monophosphate (cAMP) and Ca2+/calmodulin-dependent pro-
tein kinase II (CaMKII) levels than working cardiomyocytes,
which results in greater phosphorylation of Ca2+ handling pro-
teins (L-type Ca2+ channels, RyR, and phospholamban) and an
increase in their activity (Vinogradova et al. 2000, 2006).

Overall, the rate and amplitude of intracellular LCR, and
the balance between Ca2+ reuptake into the SR by SERCA
and extrusion via NCX, are important determinants of SDD
slope, and thus of heart rate (Vinogradova and Lakatta 2009).

Coupled-oscillator system

The combined actions of the membrane and Ca2+ clocks form
a robust and redundant system for SAN automaticity. These
individually defined ‘clocks’ are tightly coupled, as the action
of one influences the other (Bogdanov et al. 2006; Mattick
et al. 2007; Lakatta et al. 2008). Changes in membrane poten-
tial driven by the membrane clock influence intracellular Ca2+

balance, while LCR, as part of the Ca2+ clock, activate NCX,
which is located in the cell membrane and directly alters its
potential. The activity of the two clocks is further coordinated
through entrainment by mutual intracellular regulatory mech-
anisms (MacDonald et al. 2020b). In fact, the clocks are so
tightly coupled and interdependent one must question whether
it is even productive or beneficial to distinguish between
them; the oscillatory nature of the SAN is the result of the
combined activity of the various components of the membrane
and Ca2+ clocks, even though none alone are independently
oscillatory. None of If, trans-sarcolemmal Ca2+ or Na+ flux,
activation of NCX by LCR, or the decay of IK can indepen-
dently produce the rhythmic membrane potential oscillations
that result in SAN automaticity. Also, the SAN continues to
fire even with the loss of individual clock components, indi-
cating a protective redundancy. Therefore, the system driving
SAN automaticity is best thought of as a system of coupled
oscillators (rather than individual ‘clocks’).

It is important to recognise, however, that the activity of an
individual pacemaker cell in well coupled SAN tissue will not
be able to excite the entire node on its own. Thus, not only are
the cellular contributors to automaticity within SAN cells mu-
tually entrained but so must be the activity of individual cells
within SAN tissue, resulting in their synchronous excitation
(Jalife 1984). One mechanism by which this tissue-level en-
trainment of cellular activity may occur is through a cyclic
stretch of the SAN, as the right atrium fills with blood during
each heartbeat, which directly influences cell-level
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automaticity due to the inherent mechano-sensitivity of SAN
myocytes (Quinn and Kohl 2012, 2021). In fact, as described
below, SAN mechano-sensitivity might itself be considered a
‘mechanics clock’ (or better a ‘mechanics oscillator’), as
stretch effects are a key driver—and perhaps a master
controller—of cardiac pacemaking.

The contribution of SAN stretch to cardiac
pacemaking

The physiological importance of stretch effects on
heart rate

The direct effects of stretch on SAN activity were first
established by Starzinsky and von Bezold, who showed
in rabbits with severed connections between the heart and
the autonomic nervous system that an increase in venous
return caused sinus tachycardia (Starzinsky and von
Bezold 1867). More generally known, however, is the
work of Francis Bainbridge, who demonstrated that right
atrial distention by intravenous fluid injection caused an
acute increase in heart rate in anaesthetised dogs
(Bainbridge 1915). This response was later corroborated
in humans by passively lifting the legs of healthy subjects
to increase venous return to the heart—without a simulta-
neous change in arterial pressure—which similarly in-
creased heart rate (Roddie et al. 1957; Donald and
Shepherd 1978). This effect is now commonly known as
the ‘Bainbridge response’. An acute increase in heart rate
or SAN beating rate in response to sustained atrial or SAN
stretch has been shown to also occur in a multitude of
experimental animals across the invertebrate (Sénatore
et al. 2010) and vertebrate (Pathak 1973) phyla, and most
recent ly in zebraf i sh (MacDonald e t a l . 2017) .
Interestingly, this is not the case in the mouse SAN, how-
ever, where beating rate tends to decrease with sustained
stretch (Cooper and Kohl 2005). This species difference in
the heart rate response to stretch can be explained by the
relation of the reversal potential of the stretch-activated
channels involved (discussed further below) to the
species-specific action potential morphology (Cooper and
Kohl 2005; MacDonald et al. 2020a); however, that expla-
nation is yet to be experimentally verified. Regardless, the
evolutionary conservation of the heart rate response to
stretch demonstrates the fundamental nature of stretch ef-
fects on SAN automaticity. While originally considered to
be an extracardiac, neurohumorally mediated effect, an in-
crease in beating rate with stretch is observed not only in
intact animals but also in isolated hearts and right atrial
tissue (Blinks 1956), the SAN (Deck 1964), and single
SAN cells (Cooper et al. 2000) (Fig. 2), indicating that
intracardiac mechanisms are key contributors. For a

comprehensive summary of the clinically and experimen-
tally observed effects of stretch on SAN function, please
see (Quinn and Kohl 2012, 2021).

The acute increase in SAN automaticity that occurs with
distension of the right atrium (the Bainbridge response) is a
critical regulator of heart rate, which along with stretch-
induced changes in ventricular stroke volume via the
Frank–Starling mechanism allows the heart to match car-
diac output (= heart rate × stroke volume) to changes in
venous return on a beat-by-beat basis (Quinn and Kohl
2016). The Bainbridge response also opposes the barore-
ceptor response (the Bezold–Jarisch or depressor reflex,
which reduces heart rate when arterial blood pressure is
increased, von Bezold and Hirt 1867; Jarisch and Richter
1939), thus preventing excessive bradycardia or
overdistension of the right atrium, while helping to main-
tain cardiac output and adequate circulation during hemo-
dynamic changes that increase both venous return and ar-
terial pressure. Thus, the increase in heart rate with SAN
stretch is vital for maintaining balanced cardiovascular
system performance, while also matching the throughput
of the left and right sides of the heart over any period of
time (Quinn and Kohl 2012; Quinn 2015). Being a funda-
mental autoregulatory mechanism of cardiac function, it is
perhaps not surprising that the mechanisms of the SAN
stretch response are not only intrinsic to the heart but in
fact to SAN myocytes themselves (Cooper et al. 2000),
reflecting their inherent mechano-sensitivity.

Mechanisms of SAN mechano-sensitivity

Although the cellular mechanisms of the SAN stretch re-
sponse remain incompletely understood (Quinn and Kohl
2012, 2021), it is clear that they relate to acute feedback of
the heart’s mechanical status to its electrical activity, a process
known as “mechano-electric feedback” or “mechano-electric
coupling” (Quinn et al. 2014; Quinn and Kohl 2021). Clinical
and experimental observations of the acute effects of SAN
stretch can generally be explained by evoking a mechano-
sensitive trans-sarcolemmal current with a reversal potential
between the MDP and maximum systolic potential (MSP) of
SAN myocytes. Cation non-selective stretch-activated chan-
nels (SACNS), with a reversal potential between −20 and 0mV
(Guharay and Sachs 1984) would pass such a current. In fact,
a stretch of single SAN myocytes results in the activation of a
current with a reversal potential of approximately −11 mV
(Cooper et al. 2000) and its pharmacological block with
Grammostola spatulata mechanotoxin-4 (GsMTx-4) reduces
the increase in SAN beating rate seen with stretch (Cooper and
Kohl 2005).

Nevertheless, the molecular identity of SACNS in the SAN
has not yet been determined (Peyronnet et al. 2016) and one
must be cautious not to fall into a ‘plausibility trap’ by
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assuming its critical importance (Quinn and Kohl 2011), as
there are several other mechano-sensitive components within
SAN cells that may also contribute to the stretch response. In
particular, mechano-sensitivity of membrane and Ca2+ clock
components (Quinn and Kohl 2012) may partly mediate the
effects of SAN stretch on automaticity.

To start, If has been shown to be mechano-sensitive. In
cell expression systems, the activation, deactivation, and
current amplitude of HCN channels are altered by me-
chanical stimuli (Calloe et al. 2005; Lin et al. 2007),
which results in a frequency-dependent alteration in the
rate of cell excitation (Lin et al. 2007). Other components
of the membrane clock have also been shown to be
mechano-sensitive, including L-type Ca2+ channels
(Calabrese et al. 2002; Lyford et al. 2002), fast Na+ chan-
nels, and delayed rectifier K+ channels (Morris 2011).
Components of the Ca2+ clock have likewise been shown
to be mechano-sensitive in other cardiac cell types, as
axial stretch of ventricular myocytes results in an increase
of Ca2+ sparks (Iribe et al. 2009). Lowered extracellular
Ca2+ and pharmacological inhibition of SERCA (which
prevents the reuptake of Ca2+ into the SR) or of RyR
(which prevents Ca2+ release from the SR) results in a
reduction in the SAN stretch response (Arai et al. 1996).
These findings, along with the immediate change in SAN
cell beating rate that occurs with acute changes in intra-
cellular Ca2+ concentration (Yaniv et al. 2011), support
the potential importance of the mechano-sensitivity of
Ca2+ handling in the response of the SAN to stretch.
Ultimately, if any of the above mechanically induced
changes seen in other cell types occur in SAN myocytes,
they could make significant contributions to SAN
mechano-sensitivity, and while the specific mechanism(s)
leading to the acute response of the SAN to stretch remain
unclear, it seems reasonable to assume that like the
coupled-oscillator system driving automaticity, multiple
mechanisms may be involved. What is clear is that stretch

generally leads to an increase in SAN beating rate, which
may be important for in vivo SAN function.

Mechanical entrainment of SAN activity

In vivo, during atrial diastole, the ventricles are contracting,
pulling the atrioventricular valve plane apically and causing a
stretch of the atrial tissue containing the SAN (Hales et al.
2012). The SAN is then stretched further as blood returns to
the heart and fills the right atrium. Peak SAN stretch levels
coincide with the period of SDD, as membrane potential is
moving towards the threshold for AP generation, so any
stretch-induced depolarising currents will act to mechanically
‘prime’ pacemaker cells for excitation. This allows for a beat-
by-beat adaptation of heart rate to changes in venous return,
such as occur with exercise, alterations in posture, or modula-
tion of thorax-abdomen pressure gradients caused by respira-
tory activity (Quinn and Kohl 2012).

At the tissue level, a stretch of the SAN may play another
important role. While the majority of SAN cells will experi-
ence stretch-induced depolarisation during a similar period of
SDD, cells that are not firing synchronously will experience it
at some other point in the cardiac cycle. The response to this
‘out-of-phase’ stretch may act to entrain (or reset) the electri-
cal activity of those cells via a phenomenon known as ‘phase-
resetting’, so that excitation is more uniformly timed across
the entire SAN. It has been shown that injection of a sub-
threshold (i.e. non-excitatory) depolarising current pulse into
spontaneously beating SAN cells (as would occur with SAN
stretch) can result in an increase or a decrease in their beating
rate, depending on the timing of the stimulation within the
cardiac cycle (Anumonwo et al. 1991), which can entrain
SAN cell activity (Verheijck et al. 1998). Phase-resetting be-
haviour, in response to an externally applied, subthreshold
electrical stimulus, has been shown to also occur in SAN
tissue (Fig. 3) (Sano et al. 1978; Jalife and Antzelevitch
1979) and has been corroborated by computational modelling

Fig. 2 Stretch-induced increase in the beating rate of isolated sinoatrial
node preparations. A Intracellular sharp electrode recording of
transmembrane potential (top) and applied and generated force (bottom;
passive stretch and active contraction pointing upwards) in spontaneously
beating cat isolated sinoatrial node (SAN) tissue (from Deck 1964) andB

patch-clamp recording of transmembrane potential in a spontaneously
beating rabbit isolated SAN cell (light curve, before stretch; dark curve,
during stretch) (from Cooper et al. 2000). Both show an increase in
beating rate during stretch, accompanied by a reduction in the absolute
value of maximum diastolic and maximum systolic potential
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(Ypey et al. 1982; Reiner and Antzelevitch 1985; Guevara and
Jongsma 1990; Anumonwo et al. 1991; Coster and Celler
2003; Krogh-Madsen et al. 2004; Tsalikakis et al. 2007;
Huang et al. 2011). Through this phenomenon, subthreshold
depolarisation of SAN cells generated intrinsically by stretch
may act to normalise heterogeneous electrical activity across
non-synchronous cells and help prevent abnormally fast or
arrhythmic groups of cells from overtaking pacemaking by
their entrainment (Abramovich-Sivan and Akselrod 1999).
Since the SAN is constantly subjected to oscillating cyclic
stretch in vivo, the stretch may thus act to specifically enhance
SDD and to ‘smooth out’ differences in automaticity between
cells across the node, thus stabilising rhythm (Ushiyama and
Brooks 1977).

SAN mechano-sensitivity: the grandfather
clock of cardiac rhythm

Maintenance of baseline heart rate and rhythm via
SAN mechano-sensitivity

Even though it was discovered over 110 years ago (Keith and
Flack 1907), our understanding of the SAN continues to de-
velop. For instance, it has just recently been revealed that there
are two distinct and competing pacemaker regions within the
SAN, localised near the superior and inferior vena cava, which
preferentially drive fast and slow heart rates, helping explain
previous observations of pacemaker shifts in response to var-
ious physiological inputs (Brennan et al. 2020). With the im-
portance of re-evaluating previous experimental evidence in
mind, we propose that the strong emphasis put on the contri-
butions of the membrane and Ca2+ oscillators to SAN auto-
maticity have meant that a critical contributor—the
mechanics oscillator—has been largely overlooked. While

the importance of the Bainbridge response as a beat-by-beat
regulator of heart rate in response to changes in venous return
is well established, the fundamental importance of diastolic
stretch and mechanical oscillations to SDD and SAN automa-
ticity are underappreciated (yet critical), as SAN mechano-
sensitivity may be involved in maintaining the regularity of
baseline rhythm and entrainingmyocytes across the node. The
contribution of mechanical load to SDD was first established
in 1964 by Klaus Deck, using microelectrode recordings of
membrane potential during an equi-biaxial stretch of cat and
rabbit isolated SAN tissue (Deck 1964). The critical nature of
a ‘minimal’ diastolic tension for the generation and
stabilisation of rhythmic SAN excitation was confirmed soon
after, as slack isolated SAN tissue often shows irregular or no
rhythm, and the application of physiological levels of baseline
stretch restores regular activity (Fig. 4) (Brooks et al. 1966;
Lange et al. 1966; Ushiyama and Brooks 1977). In such cases,
it is apparent that missed beats or SAN quiescence are due to
the failure of other pacemaker mechanisms to sustain SDD in
the absence of a sufficient mechanical preload, which when
applied restores function through a positive shift in MDP to-
wards AP threshold, resulting in regular, spontaneous excita-
tion of the SAN. The importance of an adequate preload for
SAN pacemaking may in fact be present from the very first
heartbeat during embryonic development, as fluid pressure
buildup in the quiescent cardiac tube appears to be a
prerequirement for the initiation of spontaneous cardiac exci-
tation during ontogenesis (Rajala et al. 1976, 1977; Chiou
et al. 2016).

Implications of SAN mechano-sensitivity in cardiac
disease and in ageing

A consequence of the apparent vital role of stretch for SAN
automaticity is that it may be an important consideration in

Fig. 3 Phase resetting in the
sinoatrial node (SAN). A
Application of subthreshold square-
wave pulse in the early (1), middle
(2), and late (3) phase of the cardiac
cycle in the rabbit isolated SAN
(lower tracings in each section are
action potentials from the SAN re-
gion close to the atrium to show
time of stimulus artefacts) andB the
relationship between cycle length
and time of stimulation in the car-
diac cycle, showing that subthresh-
old depolarising current pulses re-
sult in an increase or a decrease in
cycle length, depending on the
timing of the stimulation within the
cardiac cycle. From Sano et al.
(1978)
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some forms of SAN dysfunction. The SAN stretch response
has been shown to be influenced by tissue structure and stiff-
ness (MacDonald et al. 2020a), so there may be a stretch-
dependent link between SAN dysfunction and structural or
mechanical changes that occur with advanced age and in
many cardiac pathologies. Stretch-induced SAN dysfunction
with ageing and in disease may be further exasperated by
changes in SAN mechano-sensitivity secondary to electrical
remodelling (Kistler et al. 2004; Morris and Kalman 2014;
Csepe et al. 2015) or by an increase in electrically-coupled,
mechano-sensitive fibroblasts (Kohl et al. 1994; Kohl and
Noble 1996; Quinn et al. 2016) with increased fibrosis, which
will also affect the normal patterns of stretch during the car-
diac cycle, leading to an altered stretch response. Furthermore,
the stabilisation of heart rate by stretch appears to be function-
al only within a certain range, as excessive stretch results in
irregular rhythms (Lange et al. 1966) and multifocal activity
(Hoffman and Cranefield 1960), which may in part account
for SAN dysfunction in pathologies associated with atrial vol-
ume overload (Sparks et al. 1999; Morton et al. 2003; Sanders
et al. 2003).

Conclusions and future research

The SAN is a vital piece of tissue for sustaining life, and thus
its electrical activity is driven by a system of integrated and
redundant mechanisms to ensure it continues to operate under
a wide variety of (patho-)physiological conditions. SAN
stretch is one fundamental contributor to pacemaking, as it:
(A) drives SAN automaticity by contributing to SDD through
SACNS and/or mechano-sensitivity of coupled-clock compo-
nents; (B) entrains pacemaker cells across the SAN via phase-
resetting caused by their mechanically induced subthreshold
depolarisation, with the level of baseline stretch being impor-
tant for the stability of rhythm generation; and (C) regulates
SAN firing rate through the Bainbridge response, by which

stretch results in the beat-by-beat matching of heart rate to
venous return (Fig. 1).

One important consequence of a critical role for SAN
mechano-sensitivity in pacemaking is the need for its consid-
eration in future experimental investigations of SAN function.
For instance, in isolated, Langendorff perfused hearts that are
not in working mode (so have no atrial filling), the Bainbridge
response is not engaged, meaning the effect of stretch on dia-
stolic depolarisation is not present (which could partly account
for the generally slower heart rate seen in isolated compared to
in vivo hearts). Often, mechanical uncouplers (e.g.
blebbistatin) are used in these preparations, which affect me-
chanics by preventing contraction (while preserving electrical
activity). The loss of contraction should have no effect on
heart rate, as it will not change the amount of stretch experi-
enced by the SAN and in fact, might cause an increase in SAN
stretch if there is a buildup of fluid in the atria that is no longer
ejected. But in all cases, it is important to recognise that cells
in tissue are always under some level of baseline mechanical
load, which in isolated hearts (with or without mechanical
uncouplers) may contribute to the regularity of SAN firing.
Targeted manipulation of mechanical activity and baseline
load in healthy and diseased whole hearts (e.g. working vs.
non-working Langendorff, with or without blebbistatin) may
be a means to further explore the importance of the various
contributions of stretch to SAN (dys-)function in the whole
heart.

Another potential means of exploring the influences of
stretch on SAN function is computational modelling (Quinn
and Kohl 2013). Highly complex, three-dimensional, electro-
mechanically coupled whole heart models now exist
(Travanova 2011; Niederer et al. 2019), which could be mod-
ified to include the hypothesised subcellular mechanisms of
SAN mechano-sensitivity (i.e. SACNS or mechano-sensitivity
of coupled-clock components) to gain further experimentally
inaccessible insight into the relative importance of the differ-
ent effects of stretch on SAN function, as well as which
mechano-sens i t ive mechanisms can account for

Fig. 4 Effects of physiological levels of baseline stretch on isolated
sinoatrial node (SAN) beating rate. Floating microelectrode recordings
of transmembrane potential in cat isolated SAN, showing a stretch-
induced shift of the maximum diastolic potential towards less negative
values, resulting in A restoration of regular rhythm in a SAN with

irregular activity at slack length or B initiation of spontaneous excitation
in a previously quiescent SAN. In both examples, tissue length was in-
creased by ~40% from slack, with periods of stretch indicated by the
lower horizontal lines. From Lange et al. (1966)
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experimentally observed effects, to help identify the most like-
ly mechano-sensitive candidates for experimental follow-up.

SAN mechano-sensitivity may also represent an unappre-
ciated therapeutic target for the treatment of SAN dysfunction.
If subcellular mechanisms responsible for stretch effects can
be identified, then they may be pharmacologically manipulat-
ed as an anti-arrhythmic therapy for the restoration of normal
cardiac rhythm. There is also the potential to directly target
SANmechanics in diseases where it has been disrupted, using
novel devices or biomaterials to normalise stretch and restore
normal function.

In summary, SAN automaticity is driven by the combined
actions of multiple oscillators that drive SDD and ultimately
cause membrane potential to cross the threshold for AP gen-
eration. The importance of diastolic load and cyclic stretch for
SAN function has been previously underappreciated. They
may in fact be crucial for the stabilisation of pacemak-
ing through the mechanical priming and entrainment of
SAN cells and through their effect on the activity of
other mechanisms contributing to SAN automaticity,
suggesting SAN mechano-sensitivity is the ‘grandfather
clock’ of cardiac rhythm (Fig. 1).
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